Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Thorsten Stumpf ${ }^{\text {a }}$ and Michael Bolte ${ }^{\text {b* }}$

${ }^{\mathrm{a}}$ Forschungszentrum Rossendorf, Institut für Radiochemie, PO Box 510119, 01324 Dresden, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-CurieStrasse 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{N})=0.003 \AA$
R factor $=0.016$
$w R$ factor $=0.039$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetraaquatrinitratoeuropium(III) dihydrate

In the title compound, $\left[\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the Eu atom is ten-coordinated by three bidentate nitrates and four water molecules. Furthermore, two water molecules are included in the crystal structure forming a complicated network of hydrogen bonds. $\left[\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is isostructural with other lanthanide analogues.

Comment

In the series of tetraaquatrinitratolanthanide dihydrates, the structures from cerium to terbium with the exception of the Pm and Eu compounds are known. Whereas this fact is not astonishing in the case of promethium, which is radioactive, it is surprising that the europium structure has not been determined yet. In order to fill this gap, we present in this article the structure of $\left[\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Three bidentate nitrates and four coordinated water molecules produce a ten-coordinated europium with six different $\mathrm{Eu}-\mathrm{O}$ bonds between 2.511 (2) and 2.741 (2) \AA to the nitrate groups and four slightly shorter bonds to water molecules between 2.379 (2) and 2.412 (2) \AA. One nitrate ion is asymmetrically bonded and the $\mathrm{Eu}-\mathrm{O} 21$ distance is about $0.2 \AA$ longer than the other $\mathrm{Eu}-\mathrm{O}$ distances. Two further $\mathrm{H}_{2} \mathrm{O}$ molecules in the second coordination sphere of the europium are included as crystal water. The three nitrate groups are located on the same side of the Eu ion, while the water molecules are located on the other side. The crystal packing is stabilized by a complicated network of hydrogen bonds.

The structure of the title compound is isostructural with the already known $\left[\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ structures $[\mathrm{Ln}=\mathrm{Pr}$ (Fuller \& Jacobsen, 1976; Volodina et al., 1961; Rumanova et al., 1964), Nd (Rogers et al., 1983; Shi \& Wang, 1991), Sm (Shi \& Wang, 1990), Gd (Ma et al., 1991) and Tb (Moret et al., 1990)]. It fits well into and completes this series.

Experimental

At $373 \mathrm{~K}, 0.352 \mathrm{~g}(1 \mathrm{mmol}) \mathrm{Eu}_{2} \mathrm{O}_{3}$ (99.99%; Across) was dissolved in $10 \mathrm{ml} 1.0 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{HNO}_{3}$. From the light yellow solution, crystals appeared at room temperature within 5 d .

Crystal data

$\left[\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$Z=2$
$M_{r}=446.09$	$D_{x}=2.383 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.705(1) \AA$	Cell parameters from 5718
$b=9.140(1) \AA$	reflections
$c=11.647(1) \AA$	$\theta=1-25^{\circ}$
$\alpha=69.71(1)^{\circ}$	$\mu=5.13 \mathrm{~mm}^{-1}$
$\beta=88.94(1)^{\circ}$	$T=173(2) \mathrm{K}$
$\gamma=69.29(1)^{\circ}$	Block, colourless
$V=621.79(13) \AA^{\circ}$	$0.41 \times 0.39 \times 0.28 \mathrm{~mm}$

Received 15 January 2001 Accepted 16 January 2001 Online 30 January 2001

Figure 1
A perspective view of the title compound with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level.

Data collection

Siemens CCD three-circle diffract-	$R_{\text {int }}=0.022$
\quad ometer	$\theta_{\max }=30.9^{\circ}$
ω scans	$h=-9 \rightarrow 9$
Absorption correction: empirical	$k=-11 \rightarrow 13$
$\quad(S A D A B S ;$ Sheldrick, 1996$)$	$l=-15 \rightarrow 15$
$T_{\min }=0.148, T_{\max }=0.238$	255 standard reflections
12544 measured reflections	frequency: 1200 min
3448 independent reflections	intensity decay: none
3284 reflections	

3284 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.039$
$S=1.13$
3448 reflections
221 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 14 \cdots \mathrm{O}$	0.837 (10)	1.889 (11)	2.723 (2)	175 (3)
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 11^{\mathrm{i}}$	0.835 (10)	2.117 (11)	2.951 (2)	176 (3)
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 11^{\text {ii }}$	0.833 (10)	2.48 (3)	3.180 (2)	143 (4)
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 22^{\text {ii }}$	0.833 (10)	2.49 (3)	3.149 (2)	137 (4)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 2{ }^{\text {iiii }}$	0.834 (10)	2.260 (12)	3.081 (2)	168 (3)
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{O} 23^{\text {iii }}$	0.834 (10)	2.40 (2)	3.058 (2)	136 (3)
$\mathrm{O} 3-\mathrm{H} 3 A \cdots 5^{\text {iv }}$	0.831 (10)	1.906 (12)	2.731 (2)	171 (4)
O3-H3B \cdots O6	0.829 (10)	1.904 (10)	2.733 (2)	177 (3)
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\text {v }}$	0.837 (10)	1.857 (13)	2.675 (2)	165 (3)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 22^{\text {vi }}$	0.836 (10)	2.141 (13)	2.962 (2)	167 (3)
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 13^{\text {ii }}$	0.837 (10)	1.993 (13)	2.821 (3)	170 (4)
O5-H5B \cdots O33 ${ }^{\text {vii }}$	0.827 (10)	2.26 (3)	2.906 (2)	135 (4)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 33^{\text {i }}$	0.827 (10)	2.55 (4)	3.085 (3)	124 (4)
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 23^{\text {vi }}$	0.842 (10)	2.013 (14)	2.829 (2)	163 (3)
O6-H6B \cdots O12 ${ }^{\text {viii }}$	0.835 (10)	2.23 (3)	2.885 (2)	136 (3)
O6-H6B \cdots O33 ${ }^{\text {ii }}$	0.835 (10)	2.42 (3)	3.005 (2)	128 (3)

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1+x, y, z$; (iii) $1-x,-y, 1-z$; (iv) $1-x, 1-y,-z$; (v) $1-x, 1-y, 1-z$; (vi) $-x, 1-y, 1-z$; (vii) $1+x, y-1, z$; (viii) $x, 1+y, z$.

All H atoms were located by difference Fourier synthesis and refined isotropically applying a restraint of 0.84 (1) \AA to the $\mathrm{O}-\mathrm{H}$ distances.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

References

Fuller, C. C. \& Jacobsen, R. A. (1976). Cryst. Struct. Commun. 5, 349-352. Ma, H., Gao, S. \& Zupci, Y. (1991). Wuji Huaxue Xuebao, 7, 351-353.
Moret, E., Bünzli, J.-C. G. \& Schenk, K. J. (1990). Inorg. Chim. Acta, 178, 8388.

Rogers, D. J., Taylor, N. J. \& Toogood, G. E. (1983). Acta Cryst. C39, 939-941.
Rumanova, I. M., Volodina, G. F. \& Belov, N. V. (1964). Kristallografiya, 9, 642-654.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shi, B. D. \& Wang, J. Z. (1990). Jiegou Huaxue, 9, 164-167.
Shi, B. D. \& Wang, J. Z. (1991). Xiamen Daxue Xuebao Ziran Kexueban, 30, 55-58.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Volodina, G. F., Rumanova, I. M. \& Belov, N. V. (1961). Kristallografiya, 6, 919-922.

